2024-07-06 15:59:22 +00:00
|
|
|
#include <cx.h>
|
|
|
|
#include <neural.h>
|
|
|
|
|
|
|
|
Neural_Network *
|
|
|
|
neural_new(size_t layer_size, size_t layers) {
|
|
|
|
Neural_Network *self = malloc(sizeof(Neural_Network));
|
|
|
|
Neuron *n = NULL;
|
|
|
|
|
|
|
|
self->layer_size = layer_size;
|
|
|
|
self->layers = layers;
|
|
|
|
self->n = calloc(layer_size*layers, sizeof(Neuron));
|
2024-07-06 16:04:24 +00:00
|
|
|
|
2024-07-06 15:59:22 +00:00
|
|
|
for (int j = 0; j < layers; j++) {
|
|
|
|
n = &(self->n[j*layer_size]);
|
|
|
|
for (int i = 0; i < layers; i++) {
|
|
|
|
n->value = 0;
|
|
|
|
n->threshold = 0;
|
|
|
|
if (j) {
|
|
|
|
n->in_values = calloc(layer_size, sizeof(float *));
|
|
|
|
n->weights = calloc(layer_size, sizeof(float));
|
|
|
|
n->in_values_size = layer_size;
|
|
|
|
for (int k = 0; k < layer_size; k++) {
|
|
|
|
n->in_values[k] = &(self->n[(j-1)*layer_size + k].value);
|
|
|
|
n->weights[k] = 0.5;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
n->in_values = NULL;
|
|
|
|
n->weights = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return self;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
neural_randomize(Neural_Network *self) {
|
|
|
|
// Does not randomize, just sets 0.5, but it doesn't matter for now.
|
|
|
|
for (int i = 0; i < self->layers; i++) {
|
2024-10-08 09:29:52 +00:00
|
|
|
Neuron *n = &(self->n[self->layer_size*i]);
|
2024-07-06 15:59:22 +00:00
|
|
|
for (int j = 0; j < self->layer_size; j++) {
|
|
|
|
n[j].threshold = 0.5;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
float *
|
|
|
|
neural_process(Neural_Network *self, float *input) {
|
|
|
|
float *retval = NULL;
|
|
|
|
|
|
|
|
for (int i = 0; i < self->layer_size; i++) {
|
|
|
|
self->n[i].value = input[i];
|
|
|
|
}
|
|
|
|
for (int i = 1; i < self->layers; i++) {
|
|
|
|
float dot_prod = 0;
|
|
|
|
for (int j = 0; j < self->layer_size; j++) {
|
|
|
|
// MATH GOES BRRRRRRRR
|
|
|
|
dot_prod += *(self->n[i*self->layer_size + j].in_values)[j] *
|
|
|
|
self->n[i*self->layer_size + j].weights[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
retval = malloc(self->layer_size * sizeof(float));
|
|
|
|
for (int i = 0; i < self->layer_size; i++) {
|
|
|
|
retval[i] = self->n[self->layer_size*(self->layers-1)].value;
|
|
|
|
}
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|