Implement XML export

This allows to save the neural network
once it has been trained.
This commit is contained in:
Marcel Plch 2024-12-04 16:01:50 +01:00
parent ef18b57d61
commit 264fcb407b
Signed by: dormouse
GPG key ID: 2CA77596BC4BDFFE
7 changed files with 192 additions and 33 deletions

View file

@ -1,6 +1,8 @@
#ifndef CX_H #ifndef CX_H
#define CX_H #define CX_H
#define __STDC_WANT_IEC_60559_BFP_EXT__
// Include standard headers // Include standard headers
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
@ -10,6 +12,8 @@
#include <unistd.h> #include <unistd.h>
#include <stdint.h> #include <stdint.h>
#include <pthread.h> #include <pthread.h>
#include <inttypes.h>
#include <string.h>
// Include GLEW // Include GLEW
#include <GL/glew.h> #include <GL/glew.h>

View file

@ -22,7 +22,7 @@ int modelRegistry_register(ModelRegistry *, Model *);
void modelRegistry_free(ModelRegistry *); void modelRegistry_free(ModelRegistry *);
GLfloat * model_applyTransformations(Model *); GLfloat * model_applyTransformations(Model *);
void model_colorFromPosition(Model *); void model_colorFromPosition(Model *);
void model_colorXYZ(Model *, int R, int G, int B); void model_colorXYZ(Model *, float R, float G, float B);
void model_colorRed(Model *); void model_colorRed(Model *);
void model_colorGreen(Model *); void model_colorGreen(Model *);
void model_colorBlue(Model *); void model_colorBlue(Model *);

View file

@ -32,6 +32,7 @@ float *neural_loadData(Neural_Network *, const char *);
float *neural_process(Neural_Network *, float *); float *neural_process(Neural_Network *, float *);
Neural_Data *neural_getData(Neural_Network *, size_t); Neural_Data *neural_getData(Neural_Network *, size_t);
int neural_getMesh(Neural_Network *, ModelRegistry *); int neural_getMesh(Neural_Network *, ModelRegistry *);
char *neural_getXML(Neural_Network *);
#endif #endif

View file

@ -279,26 +279,22 @@ cx_nnthread(void *self) {
CX_Thread *self_t = self; CX_Thread *self_t = self;
CX_NN_CTX *nn_ctx = self_t->ctx; CX_NN_CTX *nn_ctx = self_t->ctx;
float *input, *output; float *input, *output;
char *export;
cx_nninit(&nn_ctx->nn); cx_nninit(&nn_ctx->nn);
input = neural_loadData(nn_ctx->nn, "../training_data/0"); input = neural_loadData(nn_ctx->nn, "../training_data/0");
for (int i = 0; i < 64; i++) {
nn_ctx->nn->layers[0]->neurons[i].value = input[i];
}
output = neural_process(nn_ctx->nn, input); output = neural_process(nn_ctx->nn, input);
for (int i = 0; i < 4; i++) { export = neural_getXML(nn_ctx->nn);
nn_ctx->nn->layers[7]->neurons[i].value = output[i];
}
return NULL; return export;
} }
int int
cx_run(CX_Context *ctx) { cx_run(CX_Context *ctx) {
CX_ThreadGroup *tg[2]; CX_ThreadGroup *tg[2];
void *neural_xml;
// Establish a model registry // Establish a model registry
ctx->gl_ctx->mr = modelRegistry_new(); ctx->gl_ctx->mr = modelRegistry_new();
@ -308,7 +304,7 @@ cx_run(CX_Context *ctx) {
tg[1] = cx_threadGroup_new(&cx_nnthread, ctx->nn_ctx); tg[1] = cx_threadGroup_new(&cx_nnthread, ctx->nn_ctx);
pthread_join(tg[1]->group_manager->thread, NULL); pthread_join(tg[1]->group_manager->thread, &neural_xml);
ctx->gl_ctx->master_lock = 0; ctx->gl_ctx->master_lock = 0;
@ -323,6 +319,7 @@ cx_run(CX_Context *ctx) {
free(ctx->threads); free(ctx->threads);
free(ctx); free(ctx);
free(neural_xml);
return 0; return 0;
} }

View file

@ -4,7 +4,6 @@ int
main(void) { main(void) {
// CX context (Window, neural network, threads.) // CX context (Window, neural network, threads.)
CX_Context *cx_ctx; CX_Context *cx_ctx;
int retval; int retval;
if (cx_init(&cx_ctx)) { if (cx_init(&cx_ctx)) {

View file

@ -129,7 +129,7 @@ model_colorFromPosition(Model *self) {
} }
} }
void model_colorXYZ(Model *self, int R, int G, int B) { void model_colorXYZ(Model *self, float R, float G, float B) {
for (int i = 0; i < self->bufsize; i++) { for (int i = 0; i < self->bufsize; i++) {
for (int j = 0; j < 4; j++) { for (int j = 0; j < 4; j++) {
switch(j) { switch(j) {

View file

@ -73,7 +73,6 @@ neural_randomize(Neural_Network *self) {
Neural_Layer *nl; Neural_Layer *nl;
uint64_t *rand_vals; uint64_t *rand_vals;
f = fopen("/dev/urandom", "r"); f = fopen("/dev/urandom", "r");
for (int i = 0; i < self->layer_count; i++) { for (int i = 0; i < self->layer_count; i++) {
@ -83,7 +82,7 @@ neural_randomize(Neural_Network *self) {
fread(rand_vals, sizeof(uint64_t), fread(rand_vals, sizeof(uint64_t),
nl->layer_size_next, f); nl->layer_size_next, f);
for (int k = 0; k < nl->layer_size_next; k++) { for (int k = 0; k < nl->layer_size_next; k++) {
nl->neurons[j].synapses[k] = (float)rand_vals[k] / UINT64_MAX; nl->neurons[j].synapses[k] = (float)rand_vals[k] / UINT64_MAX / nl->layer_size;
} }
free(rand_vals); free(rand_vals);
} }
@ -135,8 +134,8 @@ neural_process(Neural_Network *self, float *input) {
for (int i = 0; i < self->layers[0]->layer_size; i++) { for (int i = 0; i < self->layers[0]->layer_size; i++) {
nl->neurons[i].value = input[i]; nl->neurons[i].value = input[i];
} }
neural_vector = tensor_new(1, nl->layer_size, 0);
for (int i = 0; i < self->layer_count; i++) { for (int i = 0; i < self->layer_count; i++) {
neural_vector = tensor_new(nl->layer_size, 1, 0);
nl = self->layers[i]; nl = self->layers[i];
synapse_matrix = tensor_new(nl->layer_size_next, nl->layer_size, 0); synapse_matrix = tensor_new(nl->layer_size_next, nl->layer_size, 0);
for (int j = 0; j < nl->layer_size; j++) { for (int j = 0; j < nl->layer_size; j++) {
@ -147,9 +146,16 @@ neural_process(Neural_Network *self, float *input) {
} }
temp_buffer = tensor_multip(synapse_matrix, neural_vector); temp_buffer = tensor_multip(synapse_matrix, neural_vector);
neural_vector = temp_buffer;
if (nl->layer_size_next) {
Neural_Layer *nl_next = self->layers[i+1];
for (int j = 0; j < nl_next->layer_size; j++) {
nl_next->neurons[j].value = neural_vector->data[j];
}
}
tensor_free(neural_vector); tensor_free(neural_vector);
tensor_free(synapse_matrix); tensor_free(synapse_matrix);
neural_vector = temp_buffer;
} }
retval = malloc(nl->layer_size * sizeof(float)); retval = malloc(nl->layer_size * sizeof(float));
@ -160,48 +166,81 @@ neural_process(Neural_Network *self, float *input) {
return retval; return retval;
} }
// These two will be merged into one once I have
// enough patience to create more dynamic objects.
static void * static void *
neural_backprop_up(Neural_Network *self, size_t neuron, size_t layer) { neural_backpropagation(Neural_Network *self, int neuron, int layer, float ratio) {
return NULL; Neural_Layer *nl;
} Neural_Data *nd;
float *ratios;
int *neurons;
float *synapses;
for (int i = layer-1; i >= 0; i--) {
nl = self->layers[i];
for (int j = 0; j < nl->layer_size; j++) {
synapses = nl->neurons[j].synapses;
for (int k = 0; k < nl->layer_size_next; i++) {
synapses[k] = 0;
}
}
}
static void *
neural_backprop_down(Neural_Network *self, size_t neuron, size_t layer) {
return NULL; return NULL;
} }
int int
neural_train(Neural_Network *self, neural_train(Neural_Network *self,
const char *input_path,
const float *expected_result) { const float *expected_result) {
Neural_Data *input_data; // What the neural network received
Neural_Data *result_data; // What the neural network computed Neural_Data *result_data; // What the neural network computed
float backprop_ratio;
input_data = neural_getData(self, 0); for (int i = self->layer_count-1; i >= 0; i--) {
result_data = neural_getData(self, self->layer_count-1); Neural_Layer *nl = self->layers[i];
result_data = neural_getData(self, i);
for (int j = nl->layer_size-1; j >= 0; j--) {
backprop_ratio = nl->neurons[i].value / expected_result[i];
neural_backpropagation(self, j, i, backprop_ratio);
}
}
return 0; return 0;
} }
Neural_Data *
neural_data_new(int layer_size, int layer_size_next) {
Neural_Data *self;
self = calloc(1, sizeof(Neural_Data));
self->neural_vector = malloc(layer_size * sizeof(float));
self->vect_len = layer_size;
if (layer_size_next) {
self->synapse_matrix = malloc(layer_size * layer_size_next
* sizeof(float));
self->mat_len = layer_size_next;
}
return self;
}
Neural_Data * Neural_Data *
neural_getData(Neural_Network *self, size_t layer) { neural_getData(Neural_Network *self, size_t layer) {
Neural_Layer *nl; Neural_Layer *nl;
Neural_Data *retval; Neural_Data *retval;
retval = malloc(1 * sizeof(Neural_Data));
nl = self->layers[layer]; nl = self->layers[layer];
retval->neural_vector = malloc(nl->layer_size * sizeof(float)); retval = neural_data_new(nl->layer_size, nl->layer_size_next);
retval->vect_len = nl->layer_size; retval->vect_len = nl->layer_size;
if (!nl->layer_size_next) { if (!nl->layer_size_next) {
retval->synapse_matrix = NULL; retval->synapse_matrix = NULL;
retval->mat_len = 0; retval->mat_len = 0;
} }
else { else {
retval->synapse_matrix = malloc(nl->layer_size * nl->layer_size_next
* sizeof(float));
for (int i = 0; i < nl->layer_size; i++) { for (int i = 0; i < nl->layer_size; i++) {
for (int j = 0; j < nl->layer_size_next; j++) { for (int j = 0; j < nl->layer_size_next; j++) {
retval->synapse_matrix[i*j+i] = nl->neurons[i].synapses[j]; retval->synapse_matrix[i*j+i] = nl->neurons[i].synapses[j];
@ -222,7 +261,7 @@ neural_getMesh(Neural_Network *nn, ModelRegistry *mr) {
for (int j = 0; j < nn->layer_count; j++) { for (int j = 0; j < nn->layer_count; j++) {
Neural_Layer *nl = nn->layers[j]; Neural_Layer *nl = nn->layers[j];
for (int i = 0; i < nl->layer_size; i++) { for (int i = 0; i < nl->layer_size; i++) {
unsigned int brightness; float brightness;
for (int k = 0; k < nl->layer_size_next; k++) { for (int k = 0; k < nl->layer_size_next; k++) {
model = model_line((-.90) model = model_line((-.90)
+ ((GLfloat)2 * i * .90/(nl->layer_size-1)), + ((GLfloat)2 * i * .90/(nl->layer_size-1)),
@ -236,7 +275,7 @@ neural_getMesh(Neural_Network *nn, ModelRegistry *mr) {
.001 // girth .001 // girth
); );
brightness = nl->neurons[i].synapses[k] * 255; brightness = nl->neurons[i].synapses[k];
if (brightness) { if (brightness) {
model_colorXYZ(model, brightness, 0, 0); model_colorXYZ(model, brightness, 0, 0);
} }
@ -245,7 +284,7 @@ neural_getMesh(Neural_Network *nn, ModelRegistry *mr) {
model = model_circle(0, (GLfloat)1/64); model = model_circle(0, (GLfloat)1/64);
brightness = nl->neurons[i].value <= 1.0 ? brightness = nl->neurons[i].value <= 1.0 ?
nl->neurons[i].value : 255; nl->neurons[i].value : 1.0;
model_colorXYZ(model, 0, brightness, 0); model_colorXYZ(model, 0, brightness, 0);
Tensor *translation_matrix = tensor_new(4, 4, 1); Tensor *translation_matrix = tensor_new(4, 4, 1);
Tensor *aspectRatio_matrix = tensor_new(4, 4, 1); Tensor *aspectRatio_matrix = tensor_new(4, 4, 1);
@ -270,3 +309,122 @@ neural_getMesh(Neural_Network *nn, ModelRegistry *mr) {
return 0; return 0;
} }
static char*
indented_line(char *str, const char *line, int *indent) {
for (int m = 0; m < *indent; m++)
str = strcat(str, " ");
str = strcat(str, line);
return str;
}
static char*
indented_tag(char *str, const char *tag, int *indent) {
if (tag[1] == '/') {
*indent -= 4;
}
indented_line(str, tag, indent);
if (tag[1] != '/') {
*indent += 4;
}
return str;
}
// TODO
/* This XML implementation has potential bugs and has not
* been checked very thoroughly, fix, please.
*/
char *
neural_getXML(Neural_Network *nn) {
char *retval;
const char *to_write;
int volume = 0;
int indent = 0;
retval = malloc(0xff * sizeof(char));
to_write = "<?xml version=\"1.0\"?>\n\n";
retval = strcpy(retval, to_write);
to_write = "<Network>\n";
retval = indented_tag(retval, to_write, &indent);
for (int i = 0; i < nn->layer_count; i++) {
Neural_Layer *nl;
Neural_Data *nd;
char *line_prep;
nl = nn->layers[i];
nd = neural_getData(nn, i);
retval = realloc(retval, strlen(retval)
+ (nl->layer_size * 32 * nl->layer_size_next)// Matrix
+ (nl->layer_size * 32) // Vector
+ 0x3ff * nl->layer_size // Expected tag garbage.
+ indent); // Space waster
to_write = "<Layer>\n";
retval = indented_tag(retval, to_write, &indent);
to_write = "<Synapse_Matrix>\n";
retval = indented_tag(retval, to_write, &indent);
for (int j = 0; j < nd->mat_len; j++) {
char number_buffer[32];
line_prep = malloc((nl->layer_size * 32 * nl->layer_size_next) // Matrix
+ (nl->layer_size * 32));
*line_prep = '\0';
line_prep = strcat(line_prep, "[ ");
for (int k = 0; k < nd->vect_len; k++) {
strfromf(number_buffer, 32, "%.2f ", nd->synapse_matrix[k+j*nd->mat_len]);
line_prep = strcat(line_prep, number_buffer);
if (k < nd->vect_len - 1) {
line_prep = strcat(line_prep, ", ");
}
}
line_prep = strcat(line_prep, " ]\n");
retval = indented_line(retval, line_prep, &indent);
free(line_prep);
}
to_write = "</Synapse_Matrix>\n";
retval = indented_tag(retval, to_write, &indent);
to_write = "<Neural_Vector>\n";
retval = indented_tag(retval, to_write, &indent);
char number_buffer[32];
line_prep = malloc((nl->layer_size * 32 * nl->layer_size_next) // Matrix
+ (nl->layer_size * 32));
*line_prep = '\0';
line_prep = strcat(line_prep, "[ ");
for (int k = 0; k < nd->vect_len; k++) {
strfromf(number_buffer, 32, "%.4f", nd->neural_vector[k]);
line_prep = strcat(line_prep, number_buffer);
if (k < nd->vect_len - 1) {
line_prep = strcat(line_prep, ", ");
}
}
line_prep = strcat(line_prep, " ]\n");
retval = indented_line(retval, line_prep, &indent);
free(line_prep);
to_write = "</Neural_Vector>\n";
retval = indented_tag(retval, to_write, &indent);
to_write = "</Layer>\n";
retval = indented_tag(retval, to_write, &indent);
}
to_write = "</Network>\n";
retval = indented_tag(retval, to_write, &indent);
return retval;
}