diff --git a/include/model.h b/include/model.h index 7a11500..03d1468 100644 --- a/include/model.h +++ b/include/model.h @@ -22,6 +22,7 @@ int modelRegistry_register(ModelRegistry *, Model *); void modelRegistry_free(ModelRegistry *); GLfloat * model_applyTransformations(Model *); void model_colorFromPosition(Model *); +void model_colorXYZ(Model *, int R, int G, int B); void model_colorRed(Model *); void model_colorGreen(Model *); void model_colorBlue(Model *); diff --git a/src/model.c b/src/model.c index 73dd8b6..cc1a2e0 100644 --- a/src/model.c +++ b/src/model.c @@ -127,12 +127,33 @@ model_colorFromPosition(Model *self) { } } +void model_colorXYZ(Model *self, int R, int G, int B) { + for (int i = 0; i < self->bufsize; i++) { + for (int j = 0; j < 4; j++) { + switch(j) { + case 0: + self->colors[i*3+j] = R; + break; + case 1: + self->colors[i*3+j] = G; + break; + case 2: + self->colors[i*3+j] = B; + break; + default: + continue; + } + } + } +} + void model_colorRed(Model *self) { for (int i = 0; i < self->bufsize; i++) { self->colors[i*3] = 1.0f; } } + void model_colorGreen(Model *self) { for (int i = 0; i < self->bufsize; i++) { diff --git a/src/neural.c b/src/neural.c index ffbfb47..22af43c 100644 --- a/src/neural.c +++ b/src/neural.c @@ -69,23 +69,26 @@ float * neural_process(Neural_Network *self, float *input) { float *retval = NULL; Neural_Layer *nl = self->layers[0]; - - retval = malloc(self->layers[self->layer_count-1]->layer_size * sizeof(float)); + Tensor *neural_vector, *synapse_matrix, *temp_buffer; for (int i = 0; i < self->layers[0]->layer_size; i++) { nl->neurons[i].value = input[i]; } + neural_vector = tensor_new(1, nl->layer_size); for (int i = 0; i < self->layer_count; i++) { nl = self->layers[i]; - float dot_prod = 0; + synapse_matrix = tensor_new(nl->layer_size_next, nl->layer_size); for (int j = 0; j < nl->layer_size; j++) { + neural_vector->data[j] = nl->neurons[j].value; for (int k = 0; k < nl->layer_size_next; k++) { - - // MATH GOES BRRRRRRRR - dot_prod += nl->neurons[j].value - * nl->neurons[j].synapses[j]; + synapse_matrix->data[j*nl->layer_size_next+k] = nl->neurons[j].synapses[k]; } } + + temp_buffer = tensor_multip(synapse_matrix, neural_vector); + tensor_free(neural_vector); + tensor_free(synapse_matrix); + neural_vector = temp_buffer; } retval = malloc(nl->layer_size * sizeof(float)); @@ -102,6 +105,7 @@ neural_getMesh(ModelRegistry *mr, Neural_Network *nn) { for (int j = 0; j < nn->layer_count; j++) { Neural_Layer *nl = nn->layers[j]; for (int i = 0; i < nl->layer_size; i++) { + unsigned int brightness; for (int k = 0; k < nl->layer_size_next; k++) { model = model_line((-.90) + ((GLfloat)2 * i * .90/(nl->layer_size-1)), @@ -115,10 +119,14 @@ neural_getMesh(ModelRegistry *mr, Neural_Network *nn) { .001 // girth ); + brightness = nl->neurons[i].synapses[k] <= 1.0 ? nl->neurons[i].synapses[k] : 255; + model_colorXYZ(model, brightness, 0, 0); modelRegistry_register(mr, model); } model = model_circle(0, (GLfloat)1/64); + brightness = nl->neurons[i].value <= 1.0 ? nl->neurons[i].value : 255; + model_colorXYZ(model, 0, brightness, 0); Tensor *translation_matrix = tensor_new(4, 4); Tensor *aspectRatio_matrix = tensor_new(4, 4); aspectRatio_matrix->data[0] = (GLfloat)9/16; @@ -131,7 +139,6 @@ neural_getMesh(ModelRegistry *mr, Neural_Network *nn) { model->transformations[0] = translation_matrix; model->transformations[1] = aspectRatio_matrix; model->transformation_count = 2; - model_colorWhite(model); modelRegistry_register(mr, model);