Implement a function for acquiring neural data.

* Some good refactoring
This commit is contained in:
Marcel Plch 2024-10-29 17:07:08 +01:00
parent 58ae618e69
commit d2ec11859d
Signed by: dormouse
GPG key ID: 2CA77596BC4BDFFE
3 changed files with 74 additions and 30 deletions

View file

@ -18,10 +18,18 @@ typedef struct _neural_network {
ssize_t layer_count; ssize_t layer_count;
} Neural_Network; } Neural_Network;
typedef struct _neural_data {
float *neural_vector;
size_t vect_len;
float *synapse_matrix;
size_t mat_len;
} Neural_Data;
Neural_Network *neural_new(size_t, size_t, size_t); Neural_Network *neural_new(size_t, size_t, size_t);
void neural_randomize(Neural_Network *); void neural_randomize(Neural_Network *);
float *neural_process(Neural_Network *, float *); float *neural_process(Neural_Network *, float *);
int neural_getMesh(ModelRegistry *, Neural_Network *); Neural_Data *neural_getData(Neural_Network *, size_t);
int neural_getMesh(Neural_Network *, ModelRegistry *);
#endif #endif

View file

@ -47,6 +47,7 @@ cx_glrender(GLFWwindow *window, GLuint programID,
cx_glBindBuffer(render_buffer, vertexbuffer, 0, 4, cx_glBindBuffer(render_buffer, vertexbuffer, 0, 4,
mr->models[i]->bufsize*4*sizeof(GLfloat)); mr->models[i]->bufsize*4*sizeof(GLfloat));
cx_glBindBuffer(mr->models[i]->colors, colorbuffer, 2, 3, cx_glBindBuffer(mr->models[i]->colors, colorbuffer, 2, 3,
mr->models[i]->bufsize*3*sizeof(GLfloat)); mr->models[i]->bufsize*3*sizeof(GLfloat));
@ -122,6 +123,27 @@ cx_glinit(GLFWwindow **window) {
return 0; return 0;
} }
int
cx_nninit(Neural_Network **nn) {
// Allocate a Neural Network
*nn = neural_new(64, 4, 8);
if(!*nn) {
fprintf(stderr, "Failed to initialize Neural Network.\n");
return -1;
}
// Populate the neural network with sensible values.
neural_randomize(*nn);
return 0;
}
static int
cx_glrun() {
return 0;
}
static int static int
cx_nnrun(Neural_Network *nn) { cx_nnrun(Neural_Network *nn) {
@ -146,17 +168,15 @@ cx_run(GLFWwindow *window, Neural_Network *nn) {
// Establish a model registry // Establish a model registry
mr = modelRegistry_new(); mr = modelRegistry_new();
// Fill the model registry with mesh models // Fill the model registry with mesh models
neural_getMesh(mr, nn); neural_getMesh(nn, mr);
// Remainder from cursor experiments, might be useful later // Remainder from cursor experiments, might be useful later
double xpos, ypos; double xpos, ypos;
glfwGetCursorPos(window, &xpos, &ypos); glfwGetCursorPos(window, &xpos, &ypos);
int t = 0;
do { do {
cx_glrender(window, programID, mr); cx_glrender(window, programID, mr);
t++;
usleep(1000000/60); usleep(1000000/60);
// Check if the ESC key was pressed or the window was closed // Check if the ESC key was pressed or the window was closed
} while(glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS } while(glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS
@ -169,19 +189,3 @@ cx_run(GLFWwindow *window, Neural_Network *nn) {
return 0; return 0;
} }
int
cx_nninit(Neural_Network **nn) {
// Allocate a Neural Network
*nn = neural_new(64, 4, 8);
if(!*nn) {
fprintf(stderr, "Failed to initialize Neural Network.\n");
return -1;
}
// Populate the neural network with sensible values.
neural_randomize(*nn);
return 0;
}

View file

@ -66,9 +66,10 @@ neural_randomize(Neural_Network *self) {
nl->layer_size_next, f); nl->layer_size_next, f);
for (int j = 0; j < nl->layer_size; j++) { for (int j = 0; j < nl->layer_size; j++) {
for (int k = 0; k < nl->layer_size_next; k++) { for (int k = 0; k < nl->layer_size_next; k++) {
nl->neurons[j].synapses[k] = UINT64_MAX / rand_vals[k]; nl->neurons[j].synapses[k] = (float)rand_vals[k] / UINT64_MAX;
} }
} }
free(rand_vals);
} }
} }
@ -155,20 +156,50 @@ neural_backprop_down(Neural_Network *self, size_t neuron, size_t layer) {
int int
neural_train(Neural_Network *self, neural_train(Neural_Network *self,
const float *testdata, const float *expected_result) {
const float *testresult) { Neural_Data *input_data; // What the neural network received
float *retval; Neural_Data *result_data; // What the neural network computed
int k, i;
retval = malloc(self->layers[self->layer_count-1]->layer_size * sizeof(float)); input_data = neural_getData(self, 0);
k = 0; result_data = neural_getData(self, self->layer_count-1);
i = 0;
return 0;
}
Neural_Data *
neural_getData(Neural_Network *self, size_t layer) {
Neural_Layer *nl;
Neural_Data *retval;
retval = malloc(1 * sizeof(Neural_Data));
nl = self->layers[layer];
retval->neural_vector = malloc(nl->layer_size * sizeof(float));
retval->vect_len = nl->layer_size;
if (!nl->layer_size_next) {
retval->synapse_matrix = NULL;
retval->mat_len = 0;
}
else {
retval->synapse_matrix = malloc(nl->layer_size * nl->layer_size_next
* sizeof(float));
for (int i = 0; i < nl->layer_size; i++) {
for (int j = 0; j < nl->layer_size_next; j++) {
retval->synapse_matrix[i*j+i] = nl->neurons[i].synapses[j];
}
}
}
for (int i = 0; i < nl->layer_size; i++) {
retval->neural_vector[i] = nl->neurons[i].value;
}
return retval; return retval;
} }
int int
neural_getMesh(ModelRegistry *mr, Neural_Network *nn) { neural_getMesh(Neural_Network *nn, ModelRegistry *mr) {
Model *model; Model *model;
for (int j = 0; j < nn->layer_count; j++) { for (int j = 0; j < nn->layer_count; j++) {
Neural_Layer *nl = nn->layers[j]; Neural_Layer *nl = nn->layers[j];
@ -187,7 +218,8 @@ neural_getMesh(ModelRegistry *mr, Neural_Network *nn) {
.001 // girth .001 // girth
); );
brightness = nl->neurons[i].synapses[k] <= 1.0 ? nl->neurons[i].synapses[k] : 255; brightness = nl->neurons[i].synapses[k] <= 1.0 ? nl->neurons[i].synapses[k] * 255 : 255;
if (brightness)
model_colorXYZ(model, brightness, 0, 0); model_colorXYZ(model, brightness, 0, 0);
modelRegistry_register(mr, model); modelRegistry_register(mr, model);
} }