Compare commits

..

No commits in common. "fa0d6291fe9daff7162e8db4c7a474f56e330ac4" and "f4cae1e5c1bb67c4e480e448a99f1bada97417d6" have entirely different histories.

9 changed files with 186 additions and 441 deletions

View file

@ -25,11 +25,11 @@
// Declare functions // Declare functions
int cx_glinit(GLFWwindow **); int cx_glinit(GLFWwindow **);
int cx_nninit(Neural_Network **); int cx_glrun(GLFWwindow *);
int cx_run(GLFWwindow *, Neural_Network *); int cx_nninit(Neural_Network **);
int cx_nnrun(Neural_Network *);
#endif #endif

View file

@ -4,7 +4,7 @@
typedef struct _model { typedef struct _model {
GLfloat *object; GLfloat *object;
GLfloat *colors; GLfloat *colors;
Tensor **transformations; GLfloat **transformations;
size_t bufsize; size_t bufsize;
size_t transformation_count; size_t transformation_count;
size_t transformation_size; size_t transformation_size;
@ -22,14 +22,6 @@ int modelRegistry_register(ModelRegistry *, Model *);
void modelRegistry_free(ModelRegistry *); void modelRegistry_free(ModelRegistry *);
GLfloat * model_applyTransformations(Model *); GLfloat * model_applyTransformations(Model *);
void model_colorFromPosition(Model *); void model_colorFromPosition(Model *);
void model_colorXYZ(Model *, int R, int G, int B);
void model_colorRed(Model *);
void model_colorGreen(Model *);
void model_colorBlue(Model *);
void model_colorWhite(Model *);
void model_colorBlack(Model *);
Model *model_circle(int, GLfloat);
Model *model_line(GLfloat, GLfloat, GLfloat, GLfloat, GLfloat);
#endif #endif

View file

@ -3,25 +3,21 @@
typedef struct _neuron { typedef struct _neuron {
float value; float value;
float *synapses; // Synapses of the neuron towards the next layer, float threshold;
// NULL if output layer float **in_values;
float *weights;
ssize_t in_values_size;
} Neuron; } Neuron;
typedef struct _neural_layer {
Neuron *neurons;
size_t layer_size; // Neurons Per Layer
size_t layer_size_next; // Neurons in next layer, 0 if output layer,
} Neural_Layer;
typedef struct _neural_network { typedef struct _neural_network {
Neural_Layer **layers; Neuron *n;
ssize_t layer_count; ssize_t layer_size; // Neurons Per Layer
ssize_t layers;
} Neural_Network; } Neural_Network;
Neural_Network *neural_new(size_t, size_t, size_t); Neural_Network *neural_new(size_t, size_t);
void neural_randomize(Neural_Network *); void neural_randomize(Neural_Network *);
float *neural_process(Neural_Network *, float *); float *neural_process(Neural_Network *, float *);
int neural_getMesh(ModelRegistry *, Neural_Network *);
#endif #endif

View file

@ -1,19 +1,11 @@
#ifndef TENSOR_H #ifndef MATRIX_H
#define TENSOR_H #define MATRIX_H
typedef struct _tensor { float *matrix_new(void);
float *data;
size_t len;
size_t width;
} Tensor;
Tensor *tensor_new(size_t, size_t); float *matrix_multip(float *, float *);
Tensor *tensor_fromVertexBuffer(float *, size_t); float *matrix_transform(float *, int, float *);
Tensor *tensor_multip(Tensor *, Tensor *);
void tensor_free(Tensor *);
#endif #endif

114
src/cx.c
View file

@ -1,26 +1,5 @@
#include <cx.h> #include <cx.h>
static void
cx_glBindBuffer(GLfloat *render_buffer, GLuint buffer_address,
GLuint gl_index, GLint member_size, GLsizeiptr bufsize) {
glBindBuffer(GL_ARRAY_BUFFER, buffer_address);
glBufferData(GL_ARRAY_BUFFER, bufsize,
render_buffer, GL_STATIC_DRAW);
// 1rst attribute buffer : vertices
glEnableVertexAttribArray(gl_index);
glBindBuffer(GL_ARRAY_BUFFER, buffer_address);
glVertexAttribPointer(
gl_index, // attribute 0 in the pipeline
member_size, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
NULL // array buffer offset
);
}
static int static int
cx_glrender(GLFWwindow *window, GLuint programID, cx_glrender(GLFWwindow *window, GLuint programID,
ModelRegistry *mr) { ModelRegistry *mr) {
@ -41,17 +20,42 @@ cx_glrender(GLFWwindow *window, GLuint programID,
for (int i = 0; i < mr->model_count; i++) { for (int i = 0; i < mr->model_count; i++) {
// Allocate the render buffer
// GL uses this to feed the GPU
render_buffer = model_applyTransformations(mr->models[i]); render_buffer = model_applyTransformations(mr->models[i]);
cx_glBindBuffer(render_buffer, vertexbuffer, 0, 4, glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
mr->models[i]->bufsize*4*sizeof(GLfloat)); glBufferData(GL_ARRAY_BUFFER, mr->models[i]->bufsize*4*sizeof(GLfloat),
cx_glBindBuffer(mr->models[i]->colors, colorbuffer, 2, 3, render_buffer, GL_STATIC_DRAW);
mr->models[i]->bufsize*3*sizeof(GLfloat));
// 1rst attribute buffer : vertices
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glVertexAttribPointer(
0, // attribute 0 in the pipeline
4, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
NULL // array buffer offset
);
glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);
glBufferData(GL_ARRAY_BUFFER, mr->models[i]->bufsize*3*sizeof(GLfloat),
mr->models[i]->colors, GL_STATIC_DRAW);
// 1rst attribute buffer : vertices
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);
glVertexAttribPointer(
2, // attribute 0 in the pipeline
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
NULL // array buffer offset
);
// Draw! // Draw!
glDrawArrays(GL_TRIANGLES, 0, mr->models[i]->bufsize); glDrawArrays(GL_TRIANGLES, 0, mr->models[i]->bufsize); // 3 indices starting at 0 -> 1 triangle
glDisableVertexAttribArray(0); glDisableVertexAttribArray(0);
glDisableVertexAttribArray(2); glDisableVertexAttribArray(2);
@ -122,31 +126,41 @@ cx_glinit(GLFWwindow **window) {
return 0; return 0;
} }
static int
cx_nnrun(Neural_Network *nn) {
// Establish a neural interface.
float *input_buffer = malloc(64*sizeof(float));
float *output_buffer;
output_buffer = neural_process(nn, input_buffer);
return 0;
}
int int
cx_run(GLFWwindow *window, Neural_Network *nn) { cx_glrun(GLFWwindow *window) {
ModelRegistry *mr;
GLuint VertexArrayID; GLuint VertexArrayID;
GLuint programID; GLuint programID;
if (cx_loadShaders(&VertexArrayID, &programID)) { if (cx_loadShaders(&VertexArrayID, &programID)) {
return -1; return -1;
} }
// Establish a model registry // Establish a model registry
ModelRegistry *mr;
mr = modelRegistry_new(); mr = modelRegistry_new();
// Fill the model registry with mesh models for (int i = 0; i < 3; i++) {
neural_getMesh(mr, nn); // Load model to render from file
Model *model = model_load("../3d_assets/triangle.obj");
GLfloat *rotation_matrix = matrix_new();
GLfloat *translation_matrix = matrix_new();
rotation_matrix[0] = cos(M_PI*2/256);
rotation_matrix[8] = -sin(M_PI*2/256);
rotation_matrix[2] = sin(M_PI*2/256);
rotation_matrix[10] = cos(M_PI*2/256);
translation_matrix[3] = -0.5 + (0.5 * i);
model->transformations[0] = rotation_matrix;
model->transformations[1] = translation_matrix;
model->transformation_count = 2;
model_colorFromPosition(model);
modelRegistry_register(mr, model);
}
// Allocate the render buffer
// GL uses this to feed the GPU
// Remainder from cursor experiments, might be useful later // Remainder from cursor experiments, might be useful later
double xpos, ypos; double xpos, ypos;
@ -172,7 +186,7 @@ cx_run(GLFWwindow *window, Neural_Network *nn) {
int int
cx_nninit(Neural_Network **nn) { cx_nninit(Neural_Network **nn) {
// Allocate a Neural Network // Allocate a Neural Network
*nn = neural_new(64, 4, 8); *nn = neural_new(64, 1);
if(!*nn) { if(!*nn) {
fprintf(stderr, "Failed to initialize Neural Network.\n"); fprintf(stderr, "Failed to initialize Neural Network.\n");
return -1; return -1;
@ -184,4 +198,14 @@ cx_nninit(Neural_Network **nn) {
return 0; return 0;
} }
int
cx_nnrun(Neural_Network *nn) {
// Establish a neural interface.
float *input_buffer = malloc(64*sizeof(float));
float *output_buffer;
output_buffer = neural_process(nn, input_buffer);
return 0;
}

View file

@ -21,6 +21,6 @@ main(void) {
return -1; return -1;
} }
retval = cx_run(window, nn); retval = cx_glrun(window);
return retval; return retval;
} }

View file

@ -6,7 +6,7 @@ model_new(size_t size) {
self->object = calloc((size ? size : 1) *4 , sizeof(GLfloat)); self->object = calloc((size ? size : 1) *4 , sizeof(GLfloat));
self->colors = calloc((size ? size : 1) *3 , sizeof(GLfloat)); self->colors = calloc((size ? size : 1) *3 , sizeof(GLfloat));
self->bufsize = size; self->bufsize = size;
self->transformations = calloc(8 , sizeof(Tensor *)); self->transformations = calloc(8 , sizeof(GLfloat*));
self->transformation_size = 8; self->transformation_size = 8;
self->transformation_count = 0; self->transformation_count = 0;
return self; return self;
@ -16,9 +16,6 @@ int
model_free(Model *self) { model_free(Model *self) {
free(self->object); free(self->object);
free(self->colors); free(self->colors);
for (int i = 0; i < self->transformation_count; i++) {
tensor_free(self->transformations[i]);
}
free(self->transformations); free(self->transformations);
free(self); free(self);
return 0; return 0;
@ -70,7 +67,9 @@ model_load(const char *path) {
for (int j = 0; j < 3; j++) { for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) { for (int k = 0; k < 3; k++) {
self->object[i*12+j*4+k] = vertices[(faces[i*3+j]-1)*3+k]; self->object[i*12+j*4+k] = vertices[(faces[i*3+j]-1)*3+k];
printf("%f, ", vertices[(faces[i*3+j]-1)*3+k]);
} }
printf("\n");
self->object[i*12+j*4+3] = 1; self->object[i*12+j*4+3] = 1;
} }
} }
@ -82,34 +81,21 @@ model_load(const char *path) {
GLfloat * GLfloat *
model_applyTransformations(Model *self) { model_applyTransformations(Model *self) {
// Temporary storage of transformation results // Temporary storage of transformation results
Tensor *temp_buffer[2] = {NULL}; GLfloat *temp_buffer[2] = {NULL};
GLfloat *retval;
// BANANA, ROH-TAH-TEH // BANANA, ROH-TAH-TEH
temp_buffer[1] = tensor_fromVertexBuffer(self->object, self->bufsize); temp_buffer[1] = malloc(self->bufsize * 4 * sizeof(GLfloat));
memcpy(temp_buffer[1], self->object, self->bufsize * 4 * sizeof(GLfloat));
// No transformation, create a GLfloat buffer and return the object data.
if (!self->transformation_count) {
retval = malloc(self->bufsize * 4 * sizeof(GLfloat));
memcpy(retval, self->object, self->bufsize * 4 * sizeof(GLfloat));
return retval;
}
int i = 0; int i = 0;
do { do {
temp_buffer[i%2] = tensor_multip(self->transformations[i], temp_buffer[i%2] = matrix_transform(temp_buffer[(i+1)%2],
temp_buffer[(i+1)%2]); self->bufsize,
tensor_free(temp_buffer[(i+1)%2]); self->transformations[i]);
free(temp_buffer[(i+1)%2]);
} while (++i < self->transformation_count); } while (++i < self->transformation_count);
retval = malloc(self->bufsize * 4 * sizeof(GLfloat)); return temp_buffer[(i+1)%2];
for (int k = 0; k < self->bufsize; k++) {
for (int j = 0; j < 4; j++) {
retval[k*4+j] = temp_buffer[(i+1)%2]
->data[j*temp_buffer[(i+1)%2]->width+k];
}
}
return retval;
} }
@ -127,55 +113,6 @@ model_colorFromPosition(Model *self) {
} }
} }
void model_colorXYZ(Model *self, int R, int G, int B) {
for (int i = 0; i < self->bufsize; i++) {
for (int j = 0; j < 4; j++) {
switch(j) {
case 0:
self->colors[i*3+j] = R;
break;
case 1:
self->colors[i*3+j] = G;
break;
case 2:
self->colors[i*3+j] = B;
break;
default:
continue;
}
}
}
}
void
model_colorRed(Model *self) {
for (int i = 0; i < self->bufsize; i++) {
self->colors[i*3] = 1.0f;
}
}
void
model_colorGreen(Model *self) {
for (int i = 0; i < self->bufsize; i++) {
self->colors[i*3+1] = 1.0f;
}
}
void
model_colorBlue(Model *self) {
for (int i = 0; i < self->bufsize; i++) {
self->colors[i*3+2] = 1.0f;
}
}
void
model_colorWhite(Model *self) {
for (int i = 0; i < self->bufsize; i++) {
for (int j = 0; j < 3; j++) {
self->colors[i*3+j] = 1.0f;
}
}
}
Model * Model *
model_triangle(Model *self, int detail) { model_triangle(Model *self, int detail) {
if (self == NULL) { if (self == NULL) {
@ -185,83 +122,19 @@ model_triangle(Model *self, int detail) {
} }
Model * Model *
model_circle(int detail, GLfloat scale) { model_circle(Model *self, int detail) {
Model *self;
self = model_new(96);
if (self == NULL) { if (self == NULL) {
return NULL; self = model_new(36);
} }
return 0;
int k = 0;
for (int i = 0; i < 96; i++) {
self->object[(i*4)+3] = 1.0f;
if (!(i%3)) {
continue;
}
if (!(k%2)) {
self->object[(i*4)+0] = cos((M_PI*2/96)*((GLfloat)i-1.0)) * scale;
self->object[(i*4)+1] = sin((M_PI*2/96)*((GLfloat)i-1.0)) * scale;
} else {
self->object[(i*4)+0] = cos((M_PI*2/96)*((GLfloat)i+1.0)) * scale;
self->object[(i*4)+1] = sin((M_PI*2/96)*((GLfloat)i+1.0)) * scale;
}
k++;
self->object[(i*4)+3] = 1.0f;
}
return self;
} }
Model * Model *
model_line(float x1, float y1, float x2, float y2, float girth) { model_line(Model *self, int detail) {
Model *self;
float x_diff, y_diff, line_length;
x_diff = x2 - x1;
y_diff = y2 - y1;
line_length = sqrt((x_diff*x_diff) + (y_diff*y_diff));
float normal_x = (cos(M_PI/2) * x_diff
-(sin(M_PI/2) * y_diff))
/ line_length * girth / 2;
float normal_y = (sin(M_PI/2) * x_diff
+(cos(M_PI/2) * y_diff))
/ line_length * girth / 2;
self = model_new(6);
if (self == NULL) { if (self == NULL) {
return NULL; self = model_new(6);
} }
return 0;
self->object[0] = x1 + normal_x;
self->object[1] = y1 + normal_y;
self->object[3] = 1;
self->object[4] = x1 - normal_x;
self->object[5] = y1 - normal_y;
self->object[7] = 1;
self->object[8] = x2 + normal_x;
self->object[9] = y2 + normal_y;
self->object[11] = 1;
self->object[12] = x1 - normal_x;
self->object[13] = y1 - normal_y;
self->object[15] = 1;
self->object[16] = x2 + normal_x;
self->object[17] = y2 + normal_y;
self->object[19] = 1;
self->object[20] = x2 - normal_x;
self->object[21] = y2 - normal_y;
self->object[23] = 1;
return self;
} }
Model * Model *
@ -323,7 +196,7 @@ int
modelRegistry_register(ModelRegistry *self, Model *model) { modelRegistry_register(ModelRegistry *self, Model *model) {
if (self->model_count >= self->size) { if (self->model_count >= self->size) {
self->size *= 2; self->size *= 2;
self->models = realloc(self->models, self->size * sizeof(Model *)); self->models = realloc(self->models, self->size);
if (self->models == NULL) { if (self->models == NULL) {
modelRegistry_free(self); modelRegistry_free(self);
return -1; return -1;

View file

@ -1,50 +1,34 @@
#include <cx.h> #include <cx.h>
#include <neural.h>
static Neural_Layer *
nl_new(size_t layer_size, size_t layer_size_next) {
Neural_Layer *self;
self = malloc(sizeof(Neural_Layer));
self->neurons = calloc(layer_size, sizeof(Neuron));
for (int i = 0; i < layer_size; i++) {
self->neurons[i].synapses = calloc(layer_size_next, sizeof(float));
}
self->layer_size = layer_size;
self->layer_size_next = layer_size_next;
return self;
}
static void
nl_free(Neural_Layer *self) {
free(self->neurons);
free(self);
}
Neural_Network * Neural_Network *
neural_new(size_t input_size, size_t output_size, size_t layer_count) { neural_new(size_t layer_size, size_t layers) {
Neural_Network *self = malloc(sizeof(Neural_Network)); Neural_Network *self = malloc(sizeof(Neural_Network));
if (!self) { Neuron *n = NULL;
// Failed to allocate.
return NULL;
}
// The difference between layer sizes, hidden layers step between the two
// sizes in linear fashion.
ssize_t layer_diff;
self->layer_count = layer_count; self->layer_size = layer_size;
self->layers = malloc(layer_count * sizeof(Neural_Layer *)); self->layers = layers;
layer_diff = (ssize_t) output_size - input_size; self->n = calloc(layer_size*layers, sizeof(Neuron));
// Calculate sizes of individual layers and allocate them. for (int j = 0; j < layers; j++) {
for (int i = 0; i < layer_count; i++) { n = &(self->n[j*layer_size]);
self->layers[i] = nl_new(input_size for (int i = 0; i < layers; i++) {
+ (layer_diff * i / ((ssize_t)layer_count-1)), n->value = 0;
n->threshold = 0;
i < (layer_count-1) ? if (j) {
(input_size + (layer_diff * (i+1) n->in_values = calloc(layer_size, sizeof(float *));
/ ((ssize_t)layer_count-1))) n->weights = calloc(layer_size, sizeof(float));
: 0); n->in_values_size = layer_size;
for (int k = 0; k < layer_size; k++) {
n->in_values[k] = &(self->n[(j-1)*layer_size + k].value);
n->weights[k] = 0.5;
}
}
else {
n->in_values = NULL;
n->weights = NULL;
}
}
} }
return self; return self;
@ -52,145 +36,35 @@ neural_new(size_t input_size, size_t output_size, size_t layer_count) {
void void
neural_randomize(Neural_Network *self) { neural_randomize(Neural_Network *self) {
FILE *f; // Does not randomize, just sets 0.5, but it doesn't matter for now.
Neural_Layer *nl; for (int i = 0; i < self->layers; i++) {
Neuron *n = &(self->n[i*self->layer_size]);
f = fopen("/dev/urandom", "r"); for (int j = 0; j < self->layer_size; j++) {
n[j].threshold = 0.5;
for (int i = 0; i < self->layer_count; i++) {
nl = self->layers[i];
for (int j = 0; j < nl->layer_size; j++) {
fread(nl->neurons[j].synapses, sizeof(float), nl->layer_size_next, f);
} }
} }
} }
float *
neural_loadData(Neural_Network *self, const char *filename) {
Neural_Layer *nl;
FILE *f;
char *file_data;
float *retval;
int read_cursor = 0;
file_data = malloc(9*8 * sizeof(char));
retval = malloc(8*8 * sizeof(float));
// Watch out, newlines!
f = fopen(filename, "r");
nl = self->layers[0];
fread(file_data, sizeof(char), 9*8, f); // 9*8 - 8*8 value matrix + newlines
for (int i = 0; i < 8*8; i++) {
if (file_data[read_cursor] == '\n') {
read_cursor++;
}
switch (file_data[read_cursor]) {
case '0':
retval[i] = 0.0;
break;
case '1':
retval[i] = 1.0;
break;
default:
fprintf(stderr, "It would really be nice to start testing now.\n");
return NULL;
break;
}
}
return retval;
}
float * float *
neural_process(Neural_Network *self, float *input) { neural_process(Neural_Network *self, float *input) {
float *retval = NULL; float *retval = NULL;
Neural_Layer *nl = self->layers[0];
Tensor *neural_vector, *synapse_matrix, *temp_buffer;
for (int i = 0; i < self->layers[0]->layer_size; i++) { for (int i = 0; i < self->layer_size; i++) {
nl->neurons[i].value = input[i]; self->n[i].value = input[i];
} }
neural_vector = tensor_new(1, nl->layer_size); for (int i = 1; i < self->layers; i++) {
for (int i = 0; i < self->layer_count; i++) { float dot_prod = 0;
nl = self->layers[i]; for (int j = 0; j < self->layer_size; j++) {
synapse_matrix = tensor_new(nl->layer_size_next, nl->layer_size); // MATH GOES BRRRRRRRR
for (int j = 0; j < nl->layer_size; j++) { dot_prod += *(self->n[i*self->layer_size + j].in_values)[j] *
neural_vector->data[j] = nl->neurons[j].value; self->n[i*self->layer_size + j].weights[j];
for (int k = 0; k < nl->layer_size_next; k++) {
synapse_matrix->data[j*nl->layer_size_next+k] = nl->neurons[j].synapses[k];
}
} }
temp_buffer = tensor_multip(synapse_matrix, neural_vector);
tensor_free(neural_vector);
tensor_free(synapse_matrix);
neural_vector = temp_buffer;
} }
retval = malloc(nl->layer_size * sizeof(float)); retval = malloc(self->layer_size * sizeof(float));
for (int i = 0; i < nl->layer_size; i++) { for (int i = 0; i < self->layer_size; i++) {
retval[i] = nl->neurons[i].value; retval[i] = self->n[self->layer_size*(self->layers-1)].value;
} }
return retval; return retval;
} }
int
neural_train(Neural_Network *self,
const char *testdata,
const float *testresult) {
// Insert algorithm you lazy fuck.
return 0;
}
int
neural_getMesh(ModelRegistry *mr, Neural_Network *nn) {
Model *model;
for (int j = 0; j < nn->layer_count; j++) {
Neural_Layer *nl = nn->layers[j];
for (int i = 0; i < nl->layer_size; i++) {
unsigned int brightness;
for (int k = 0; k < nl->layer_size_next; k++) {
model = model_line((-.90)
+ ((GLfloat)2 * i * .90/(nl->layer_size-1)),
.90 - ((GLfloat)2 * j *.90/(nn->layer_count)),
(-.90)
+ ((GLfloat)2 * k * .90/(nl->layer_size_next-1)),
.90 - ((GLfloat)2 * (j+1) *.90/(nn->layer_count)),
.001 // girth
);
brightness = nl->neurons[i].synapses[k] <= 1.0 ? nl->neurons[i].synapses[k] : 255;
model_colorXYZ(model, brightness, 0, 0);
modelRegistry_register(mr, model);
}
model = model_circle(0, (GLfloat)1/64);
brightness = nl->neurons[i].value <= 1.0 ? nl->neurons[i].value : 255;
model_colorXYZ(model, 0, brightness, 0);
Tensor *translation_matrix = tensor_new(4, 4);
Tensor *aspectRatio_matrix = tensor_new(4, 4);
aspectRatio_matrix->data[0] = (GLfloat)9/16;
translation_matrix->data[3] = (((GLfloat)-1*16/9)*.90)
+ ((GLfloat)1/(nl->layer_size-1)*2 * i * (((GLfloat)16/9))*.90);
translation_matrix->data[7] = .90 - ((GLfloat)1/(nn->layer_count)*2 * j *.90);
model->transformations[0] = translation_matrix;
model->transformations[1] = aspectRatio_matrix;
model->transformation_count = 2;
modelRegistry_register(mr, model);
}
}
return 0;
}

View file

@ -1,68 +1,62 @@
#include "cx.h" #include "cx.h"
Tensor * float *
tensor_new(size_t len, size_t width) { matrix_new() {
Tensor *mat; float *mat;
mat = malloc(1 * sizeof(Tensor)); mat = calloc(16, sizeof(float));
mat->data = calloc(width * len, sizeof(float));
mat->len = len;
mat->width = width;
for (int i = 0; i < len; i++) {
mat->data[i*width+(i % width)] = 1;
}
return mat;
}
Tensor *
tensor_fromVertexBuffer(float *buffer, size_t bufsize) {
int mat_width;
Tensor *mat;
mat_width = bufsize;
mat = tensor_new(4, mat_width);
for (int i = 0; i < bufsize; i++) { for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) { mat[i*4+i] = 1;
mat->data[j*mat_width+i] = buffer[i*4+j];
}
} }
return mat; return mat;
} }
Tensor * float *
tensor_multip(Tensor *mat2, Tensor *mat1) { matrix_multip(float *mat1, float *mat2) {
Tensor *result; float *result;
float dot_prod; float dot_prod;
result = tensor_new(mat2->len, mat1->width); result = matrix_new();
for (int i = 0; i < mat1->width; i++) { for (int i = 0; i < 4; i++) {
for (int j = 0; j < mat2->len; j++) { for (int j = 0; j < 4; j++) {
dot_prod = 0; dot_prod = 0;
for (int k = 0; k < mat1->len; k++) { for (int k = 0; k < 4; k++) {
dot_prod += mat2->data[j*mat2->width+k] * mat1->data[i+(k*mat1->width)]; dot_prod += mat1[i*4+k] * mat2[j+k*4];
} }
result->data[i+(j*mat1->width)] = dot_prod; result[j+i*4] = dot_prod;
} }
} }
result->len = mat2->len;
result->width = mat1->width;
return result; return result;
} }
void float *
tensor_free(Tensor *self) { matrix_transform(float *vects, int vectcount,
if (self) { float *mat) {
free(self->data); float dot_prod;
float *result;
result = calloc(vectcount*4, sizeof(float));
for (int k = 0; k < vectcount; k++) {
for (int j = 0; j < 4; j++) {
dot_prod = 0;
for (int i = 0; i < 4; i++) {
dot_prod += vects[k*4+i] * mat[i+j*4];
}
result[j+k*4] = dot_prod;
}
if (result[k*4+3] != 0.0f) {
float div = result[k*4+3];
for (int i = 0; i < 4; i++) {
result[k*4+i] /= div;
}
}
} }
free(self); return result;
} }